
1

In previous lectures, we focused on how to design digital hardware in 
SystemVerilog. In this lecture, we examine the internal hardware of a 
simplified version of RISC-V processor using the execution of one instruction 
as an example.   From this, you should be able to gradually add to the 
microarchitecture implementing more and more instructions.

Lecture 7 Slide 1PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Lecture 7

Microarchitecture

of a simplified RISC-V

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk



2

Microarchitecture refers to the detail digital circuits inside a processor that 
implements the ISA.  There are two components to a microarchitecture: 

The Datapath – this refers to the hardware components through which the 
instruction data or the information to be processed flow.  This forms the bulk 
of the hardware ina processor.  There are many strategy that one could use to 
implement the datapath.  For example, we will start with a simple 
implementation where each instruction takes precisely ONE clock cycle.  We 
then progress to an approach called pipelining, where several instructions 
may be executed at the same time in parallel but at different stages of 
execution.

The Control Unit – in designing the datapath, there are many signals that 
govern or control how data flows, and which part of the datapath circuit is 
enabled, and which is not.  The control unit provides these control signals.  In 
single cycle processor design, the control unit is mostly performing 
instruction decoding.  In a multi-cycle and pipelined design, the control unit 
also implements a FSM to keep track of what state the CPU is progressing at 
in different stages of pipelining.

Lecture 7 Slide 2PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

What is microarchitecture?

• Microarchitecture: how to implement an architecture in hardware
• Processor:

– Datapath: functional blocks
– Control: control signals

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



3

In a processor, there are four components that determine the state of the 
CPU. They are:
The Program Counter – this is a counter that provides the address of the 
current instruction being executed.
The Instruction Memory – this stores the program code to the processor.
The Register File – this implements the registers of the processor and is 
always implemented as a multiport memory.
The Data Memory – this stores the data or information for processing.

Lecture 7 Slide 3PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

RISC-V State Elements

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 

• State elements: determines everything about a processor:
– Architectural state:

• 32 registers
• Program Counter (PC)
• Memory

!" !"

#A%

C
!"#$%&D$(F"
*+IF%-

CD

C!
E)!

*)"

*)D
E+!

C"

*)

.+/(#$+%
M(1+

!"

,#,#-KL0
N

N

!"

!"

!"

!"

C *)
23$3

*+IF%-
E)

E+

#A%

!"

!"

!"

N

#A%



4

As seen from last lecture, the RISC-V RV32I processor has four many types of 
instructions. The code snippet shown here covers all four type of instructions.  
We will focus in the first instruction: lw  x6,  -4(x9).  

This instruction does the following: load Register 6 with the contents of from 
data memory at address specified by Register 9 with an offset of -4.

This is an I-type instruction because the offset -4 is specified in the 
instruction as a 12-bit immediate value.  The load word (lw) instruction is 
specified by the opcode (instr[6:0]) and funct3 (instr[14:12]) fields.  

Lecture 7 Slide 4PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Example Program

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 

• Design datapath
• View example program executing

!""#$%% F'%(#)*(+,' -.I$ 0+$1"% 23*4+'$563'7)37$

0x1000 L7: lw  x6, -4(x9) I 111111111100  01001 010 00110   0000011 FFC4A303
!"#$$%%&'( )* +,)-%(

0x1004     sw  x6, 8(x9) ! 0000000 00110 01001 010 01000   0100011 0064A423
!"#$$%%&.( #$$/&' +,)-%()-0(

0x1008     or  x4, x5, x6 " 0000000 00110 00101 110 00100   0110011 0062E233
!"!12345 )* +,)-%()-0(

0x100C     beq x4, x4, L7 # 1111111 00100 00100 000 10101   1100011 FE420AE3
!"#$$%06%'&.( #$$/&%6%% +,)-%()-0(



5

Consider what happens when this instruction is executed.  

Step 1 is to fetch the instruction from instruction memory.  The instruction is stored 
at address 0x1000.  The machine code of the instruction is presented to the 
instruction memory which asynchronously (i.e. immediately) produces the 32-bit 
instruction 0xFFC4A303.

We use a block asynchrous memory here because the instruction must be complete 
in clock cycle.  Therefore the instruction information is required immediately on the 
active edge of the clock signal.  The delays incurred by this step are:

1. The clock to PC delay of the counter.

2. The address to data access time of the instruction memory block.

Lecture 7 Slide 5PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Step 1: Instruction Fetch

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



6

In Step 2 is to retrieve the address pointer to data memory using the contents of x9.  
The rs1 field of the instruction (instr[19:15]) is always connected to A1 address of 
the Register File.  The contents of x9 is provided on RD1 port. It is 0x2004, which will 
be used to calculate the address of data memory to read from.

Lecture 7 Slide 6PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Step 2: Read Source Operand (rs1)

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



7

Step 3 is to compute the immediate value from this instruction, which will be used 
as an offset to the address from x9. 

The 12-bit immediate constant field (instr[31:20]) is used as the bottom 12 bits of a 
32-bit 2’s complement offset.  This offset is -4 which has a 12-bit value of 0xFFC.  
This number is sign extended to provide ImmExt value of 0xFFFFFFFC as the offset 
address.

Lecture 7 Slide 7PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Step 3: Extend the immediate constant

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



8

The offset address is passed to the ALU which performs a 32-bit addition.  This ALU 
is also used for other  arithmetic  and logic operations.  The little table above shows 
the funct3 instruction field that determines which operation is to be performed. 
0x000 is for addition.  ALU adds contents of x9, which is 0x2004, and the immediate 
offset value of -4 (0xFFFFFFFC) together to produce the effective address of 0x2000.  
This is address to data memory where the load word instruction is going to read 
from.

Lecture 7 Slide 8PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Step 4: Calculate memory address



9

The final step is to read the data from the memory address 0x2000, and store it in 
x6. 

All read ports in both instruction, register file and data memory are asynchronous 
meaning that the read data is available as soon as the address is presented.  The 
clock signal is ony used to control three things: 1) PC counter update; 2) Register file 
write; 3) Data memory write.

All these changes happens on the rising edge of the next instruction.  That is, the 
Program Counter changes on the next rising edge of the clock. This is also the time 
that the register is updated with the new write value, and data memory is written 
to.  If the register write operation is not synchronous to the next clock edge, there 
will be the potential of a race condition where there is a feedback loop that changes 
in the register file value continuously within a clock cycle.  This is obviously not 
correct.  For example, for the instruction:  addi     x3, zero, 1,   which is equivalent to 
increment x3 value by 1, without the synchronous writing operation, x3 will be 
incremented continuously through the duration of the current clock cycle.  

Lecture 7 Slide 9PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Step 5: Read data from memory & write to Reg

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



10

Step 6 is the update of the Program Counter.  Since this instruction does not change 
the flow of the program, the next PC value must be the current PC + 4.  

Now the instruction is complete.  

Note also that although we divide the execution of this instruction into six steps, in 
reality, they occur “simultaneously” because this is hardware.  For example RD1 
value and ImmExt value are derived in parallel, but ALUResult cannot be computed 
until the two input source values to the ALU are stable.  

Lecture 7 Slide 10PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Step 6: Determine address of next instruction

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



11

The second instruction is: sw x6, 8(x9), which is an S-type instruction.  This is 
similar to ”load word” instruction involving two registers and an immediate offset.  
However, the the destination is not a register but a memory location.  Therefore the 
immediate constant (of the offset) is split into two parts as shown below.

The actual hardware of the microarchitecture does not change except that we need 
a different control signal for the sign-extension unit (to generate the correct 
immediate offset), and for writing to data memory.

Lecture 7 Slide 11PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Implementation of the ”sw” instruction

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 

• Immediate: now in {instr[31:25], instr[11:7]}
• Add control signals: ImmSrc, MemWrite



12

The second instruction is: sw x6, 8(x9), which is an S-type instruction.  This is 
similar to ”load word” instruction involving two registers and an immediate offset.  
However, the the destination is not a register but a memory location.  Therefore the 
immediate constant (of the offset) is split into two parts as shown below.

The actual hardware of the microarchitecture does not change except that we need 
a different control signal for the sign-extension unit (to generate the correct 
immediate offset), and for writing to data memory.

Lecture 7 Slide 12PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Implementation of the ”sw” instruction

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 

• Immediate: now in {instr[31:25], instr[11:7]}
• Add control signals: ImmSrc, MemWrite



13

To reiterate, I and S-type instructions are similar in encoding except that they make 
up the 12-bit immediate offset constant using different bits in the instruction as 
shown here. 

Using the concatenation operator in SystemVerilog {…}, it is easy construct the sign 
extension unit to cater for either type of instruction as shown here.

Lecture 7 Slide 13PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Immediate offset for I-type and S-type are different

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



14

The third instruction is an R-type instruction:  or  x4, x5, x6.  This instruction does 
not involve the data memory.  This require the introduction of the two highlighted 
MUX component. First to select the Register data 2 instead of the immediate value.  
Second MUX select the ALU results to write back instead of the data memory (as in 
the as “lw” instruction).   The rest of the hardware remains the same.

Lecture 7 Slide 14PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 

Implementation of the ”or” instruction

• Read from rs1 and rs2 (instead of imm)
• Write ALUResult to rd



15

The final instruction in this simple program is the “branch if equal” instruction.  Here 
the addition circuit is an adder which computes the target PC address as PC +Imm.

As discussed in Lecture 6, the immediate value for the PC-relative branch instruction 
is made up from various part of the instruction in a rather weird way.  (See Lecture 6 
slide 20 for detail explanation).

In summary , there are three different ways to compose the immediate value for I, S 
and B type instructions as summarized here:

Lecture 7 Slide 15PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Implementation of the ”beq” instruction

Calculate target address: PCTarget = PC + imm

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



16

Next, consider the Control Unit that generates all the control signals to the Datapath 
circuit.

Lecture 7 Slide 16PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Adding the Control Unit

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



17

The control unit can be divided into two separate, relatively independent parts: 

1. The Main Decoder, which generates most of the control signals depending on 
the opcode field.

2. The ALU decoder which controls the ALU operation using opcode, funct3 and 
funct7 field.

Lecture 7 Slide 17PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Two different views of the Control Unit

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



18

The main decoder used to determine the instruction type (i.e. I, S, R or B etc.), and 
for each type of instruction the datapath for the operands are different according to 
the true table here.

Lecture 7 Slide 18PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Main decoder

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 



19

The ALU Decoder unit controls the ALU and determines the type of ALU operations 
that it should perform.  There are three ALU types of operations determined by 
funct3 (and in two cases, also funct7 bit 5):

1. lw, sw, where the ALU is used to computer the memory address (with an 
address pointer from Register and an immediate offset).

2. The branch equal instruction that performs a subtraction (or comparison).

3. The other ALU operations.  

Lecture 7 Slide 19PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

ALU Decoder

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 

op 6:0



20

Before we leave the single cycle RISC-V microarchitecture, let us examine the 
control signals required to implement the R-type AND instructions. 

The control signal values are labelled in the diagram here with the datapath 
highlighted in bold BLUE lines.

Lecture 7 Slide 20PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Example – Control for   and  x5, x6, x7

Based on: “Digital Design and Computer Architecture (RISC-V Edition)” 
by Sarah Harris and David Harris (H&H), 

010



21

Lab 4 is design with a number of goals in mind.  This also form the basis for your 
Team Project, which is the main coursework assignment to be done by all as Teams 
of four students.

I would recommend you to complete everything including the stretched goal.  It will 
force you to learn how to implement three of the four main type of instructions: I-
type, B-type and S-type.  R-type instructs are not include in this Lab, but is rather 
easy to implement.

Lecture 7 Slide 21PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Lab 4 – A Very Basic RISC-V CPU

• Start working as a Team – 2 pairs allocated by me

• Lab objectives:

1. To get to know your teammates.

2. To establish a Github Repo for your team where everyone’s contribute 
towards.

3. To learn about TWO RISC-V instructions in great details.

4. To design a simple CPU that executes these two instructions.

5. To use execute a short program using only these two instructions. The 
program implements the binary counter in Lab 1, but in software.

6. Stretched goal – to implement a third instruction accessing data 
memory. With this, implement the sinewave generator in software.



22

This is the program that your Reduced RISC process need to execute.  It performs 
exactly the same function as that of the simple binary counter, but in RISC-V 
instructions. The purpose of each instruction os described in the comments.

It is particularly interesting that we implement a binary up counter with only two 
instructions: addi and bne.  This illustrates how “reduced” this architecture is!

The machine code for this program is shown as “Hex Dump”. This is produced by the 
online RISC-V assembler program – link given above.

Lecture 7 Slide 22PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Lab 4 – Program to execute

https://riscvasm.lucasteske.dev
Online RISC-V Assembler:

https://riscvasm.lucasteske.dev/


23

This little program with the reduced RISC-V instruction is not easy to read.  The 
dissassembled version using pseudoinstructions is shown alone side the original 
isntructios.  “li” is load immediate. “mv” is moving values between registers. “bnez” 
is branch not equal zero.

Lecture 7 Slide 23PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Lab 4 – Pseudoinstruction is easier to read



24

To help the Team making rapid progress in the right direction, you are given the 
overall block diagram of the Reduced RISC process along the ideas presented in this 
lecture.

The entire design is divided into three parts. One student should take charge of one 
of the three parts, with a fourth member of the Team looking after the testbench, 
the compilation script and the testing of the design. 

This block diagram does not include the data memory, which will be required for the 
“Stretched Goal” of Lab 4.

Lecture 7 Slide 24PYKC 12 Nov 2024 EIE2 Instruction Architectures & Compilers

Lab 4 – Overall block diagram


